Decentralized Node Distribution within a Federation
of Kubernetes Clusters in a geo-distributed Fog
Network

Victor Bieszka
Technical University Berlin
Berlin, Germany
v.bieszka@tu-berlin.de

Abstract—Modern IoT application benefit from real-time data
processing at the edge as it enables low latency while decreasing
internet bandwidth usage. However, for smart city applications,
edge devices are not only restricted and unreliable, but also geo-
distributed. To cope with the vast management effort of a large
and distributed network, it may be necessary to organise the net-
work in sub-groups and handle resource allocation decentralised
within the groups. We designed and implemented a solution
that combines multiple Kubernetes clusters to a Federation.
The within-cluster orchestration is handled by the inherent
Kubernetes scheduler and it is extended by a decentralized node
distribution among the clusters. The distribution of nodes among
the clusters is running decentralized based on latency and current
load and ensures that each cluster has enough resources to
prevent long pending or failing requests. With this approach we
were able to decrease overall roundtrip times while improving
the success rate of requests.

Index Terms—Serverless, Kubernetes Offloading, Multi-cluster,
Fog Computing, Grouping

I. INTRODUCTION

Serverless computing is an event-driven model, where ap-
plications use Function-as-a-Service (FaaS) platforms to run
single functions without needing to take care of deployment,
scaling mechanisms and maintenance [1]. Thus application
logic is decoupled from the underlying infrastructure and code
is executed on request rather than running permanently. This
makes it easier to move parts of the applications and to allocate
resources efficiently.

The serverless programming paradigm was enabled by the
development from monolithic applications to microservices
and event-driven programming on the developers’ side and
containerization and the pay-per-use model on the infrastruc-
ture providers’ side [2].

By decoupling application logic from the underlying infras-
tructure, serverless computing enables developers to focus on
high-level abstractions of their business logic (in the form of
functions and events) that is mapped to the concrete execution
environment by cloud providers who also handle orchestra-
tion, i.e. containerization, deployment and provisioning [3].
Consequently developers will benefit from this programming
paradigm if they decompose their application logic into small

Berit Frech
Technical University Berlin
Berlin, Germany
berit.frech @campus.tu-berlin.de

Christopher Woggon
Technical University Berlin
Berlin, Germany
christopher.woggon @tu-berlin.de

units (or microservices) that can easily be containerized,
deployed and provisioned on demand.

Serverless platforms like Apache OpenWhisk!, OpenFaas?
or AWS Lambda® were originally built for the Cloud, but
properties like isolated execution, applications split into single
functions, the event-driven execution, fine-grained scalability
and the pay-per-use model are also making them a good fit for
the edge [2] [4]. But edge devices usually have very limited
resources. Microservices or functions that are provisioned on
demand rather than long-running containers enable a higher
and more efficient utilization of these scarce resources.

Additionally, handling computation at the Edge enables real-
time data processing close to the end user and decreases in-
ternet bandwidth usage since less data needs to be transported
towards the cloud [5]. This is beneficial for many IoT use
cases, like smart homes, smart cities or autonomous driving,
that rely on low latency.

In these use cases, the amount of transmitted data is
increasing exponentially. The rise in city population and the
increasing number of everyday life objects, that are turned
into smart devices, are fostering this growth. Besides, mobility
of end devices and unreliable network connectivity represent
obstacles to computing solely at the Edge. Thus, to meet
the demand of modern IoT applications, cloud and edge
nodes should be combined to create a large fog* network that
combines low latency computation at the edge with scalable,
infinite resources in the cloud [6].

However, as the number of connected devices increases, the
complexity of the system and the geo-distribution increases,
too. This may result in an infeasible management effort in
case of configuration changes or updates. Further, network
latencies, failures or message loss becomes more frequent
in large geo-distributed environments, making it harder to

Uhttps://openwhisk.apache.org/

Zhttps://www.openfaas.com/

3https://aws.amazon.com/de/lambda/

“Here, the definition of fog computing as the combination of cloud, edge
and any intermediary node is used, while edge computing exclusively refers
to computation at the edge of the network as in [6].

maintain the quality of services [6] and to obtain efficient
energy-consumption and bandwidth-usage.

Thus, to make the fog network manageable and scalable, it
may be necessary to organize it in autonomous groups. Within
groups, orchestration and management of QoS becomes fea-
sible again. However, to further benefit from all the available
resources of the fog network, these groups should not be static,
but dynamically adapt to current network conditions.

In the following we suggest to organize a fog network into
multiple autonomous Kubernetes clusters that communicate
with each other to distribute nodes according to current load
and latency. We will evaluate this approach for a serverless
use case.

In Section II we introduce the undelying technologies: Ku-
bernetes, Kubernetes Cluster Federations and OpenFaas. The
Problem Statement and Project Goal is specified in Section
III. After an overview of related work in Section IV, we
will describe our Concept and Design in Section V and the
respective implementation in Section VI. Our Implementation
is evaluated in Section VII and in Section VIII we will discuss
our results and give some perspective on future work.

II. BACKGROUND

A. Kubernetes

Kubernetes [7] is the most widely used open-source orches-
tration platform. It simplifies the orchestration of containerized
application by handling deployment, resource scheduling, load
balancing and server distribution in a large-scale infrastructure
like cluster. It provides an abstraction from small application
units, like functions or microservices, to the underlying infras-
tructure.

A Kubernetes Cluster contains a master nodes and any
number of worker nodes. The worker nodes provide the
environment for client applications while the master node
provides the environment for the control plane, which is
responsible for state management of the cluster. The control
plane further provides API endpoints to communicate with the
cluster, scheduler, and a data storage. Workloads in Kubernetes
are run by placing containers into Pods that are run on nodes.
Pods are a set of related containers and data volumes. A
Node can be either a virtual machine or a physical device,
depending on the use case. The assignment from workloads
(Pods) to nodes is handled by the scheduler. Together, the
Kubernetes components provide a highly available mechanism
for failure recovery and an efficient load distribution within a
single cluster.

However, the inherent Kubernetes scheduler only considers
CPU and RAM and not latency, bandwidth usage [8] or local-
ity [9]. In latency-sensitive IoT applications like smart driving,
where fast reactions are crucial, this becomes impractical.
Furthermore, Kubernetes was designed for local clusters in
the cloud and hence relies on network connectivity and low
latency between the nodes [10], which is not always given in
a fog environment.

B. Cluster Federations

Multiple single cluster can be combined to form a clus-
ter federation. In an IoT/Edge scenario a federation of au-
tonomous clusters allows to meet the local requirements of
geo-distributed applications and improves scalability. Due to
the presence of one control plane per cluster, the reliability in
case of network faults is improved in a cluster federation com-
pared to a single cluster [11]. Reliability is further enhanced,
if the cluster federation is spanned across multiple regions
(geo-distributed) because network failures in one region can
be absorbed by another region [12].

Additionally, maximum number of connected nodes for one
Kubernetes cluster is 5000°. For a large smart city application,
it is hence inevitable to increase the amount of connected
nodes by forming a cluster federation.

Having a federation of clusters also opens possibilities to
easily migrate workflows or applications from one cluster to
another in case of disruptions or to scale and share resources
among the clusters in case of imbalanced load.

C. OpenFaas

OpenFaas has been an emerging Serverless framework al-
lowing developers to deploy functions and microservices with
ease to Kubernetes. At it’s core is the OpenFaaS Gateway
which exposes all functionality - such as deploying and invok-
ing functions and accessing metrics - via a REST API, CLI and
UL The second most important part of the architecture is the
so called faas—-provider interface that provides a CRUD
API to actually invoke and scale up and down functions.
The OpenFaaS Gateway directly communicates with the
faas-provider through it’s API. The two most commonly
used faas—providers - and also utilized in this work - are
faas—netes for Kubernetes and faasd for single host, no
cluster OpenFaaS. Additionally, OpenFaaS runs Prometheus
for monitoring and an AlertManager that tells the OpenFaa$s
Gateway to scale functions up if the load increases or to
scale down if functions are running idle. OpenFaaS’ popularity
stems from it’s low overhead when developing, running and
maintaining functions. It takes care of exposing functions
to a REST API, scales functions automatically according
to the load and easily integrates with underlying container
orchestration tools such as Kubernetes or K3s.

III. PROBLEM STATEMENT

Ideally all of the available resources of a fog network
should be utilized efficiently. Particularly with a pay-per-
use model, where resource utilization efficiency implies cost
efficiency. This involves a mechanism to cope with fluidity
of connected devices within the network.The network needs
to adapt seamlessly, especially in a smart city environment,
where mobile phones, cars or other moving smart objects are
connected. Furthermore, applications that rely on low latency,
like a traffic control system, need quick processing of the
data at the edge. This is also required for sensitive data, that

Shttps://kubernetes.io/docs/setup/best-practices/cluster-large/

should not be transferred farther away from the data source
than necessary. As many smart city application span across
a large area, locality of nodes should also be incorporated in
scheduling and placement decisions. Finally, for services like
traffic control, availability is crucial. Thus, availability must
always be given, even in the event of network failures.

A centralised management of the fog network would yield
the most efficient resource allocation, as scheduling mech-
anisms can optimize with universal knowledge about the
network. But this central component represents a bottleneck if
all traffic needs to be directed towards the central component.
Also, if services depend on a central component, availability
may be reduced if network failures become more domi-
nant, which is the case for large environments. Decentralized
components even run when disconnected. Thus they reduce
network bandwidth usage, latency at the edge and availability.
Especially in geo-distributed networks, a decentralized archi-
tecture allows to incorporate locality of nodes to scheduling
decisions. However, relying on a static, decentralized manage-
ment of the network does not take imbalanced load patterns
and network changes into account and therefore will not
achieve overall efficiency. For example, a traffic control system
may encounter bulk requests from a street with lots of traffic
while somewhere else, little requests arrive. In such a scenario,
a Kubernetes scheduler can have too many pending pods and
thus response time will increase.

To achieve both, low latency at the edge and high avail-
ability, we use a hybrid solution with groups composed of
Kubernetes clusters that communicate to exchange nodes.
Kubernetes has already proven to reach efficient resource
allocation and fault tolerance within a cluster. To mitigate
the problem of pending pods, and thus increase availability,
the clusters can exchange nodes to gain more resources. New
nodes will be chosen decentralized among the clusters based
on latency and the current load.

IV. RELATED WORK

Splitting a fog network into groups based on latency was
already proven a solution for reduced communication latency
at the edge [13]. Within groups, broadcasting of messages
yields little response time while selective message dissemina-
tion between groups reduces the message overhead, which is
beneficial for latency-sensitive applications. In the following,
we will apply the idea of latency-based grouping to node
distribution rather than message dissemination.

Further work has been done on extending the default Ku-
bernetes scheduler with network-aware properties, like latency
and bandwidth consumption, to enable more informed resource
allocation decisions [8]. This makes Kubernetes applicable
to IoT applications in a fog environment. However, it only
improves resource utilization within a single cluster and not
among multiple clusters of a Federation.

Kubernetes Cluster Federation (KubeFed) [14] authorizes
the coordination of multiple, geo-distributed Kubernetes clus-
ters from a single control plane by extending the Kubernetes

API. KubeFed was already tested in a decentralized fog envi-
ronment and yields higher reliability and robustness compared
to a single cluster setup [11]. Nevertheless, KubeFed is lacking
support for dynamic cluster configuration changes and auto-
scaling of resources, as pod placement is static. Therefore
KubeFed is lacking automation, making it difficult to apply
for a dynamic fog environment with mobile edge devices and
frequent node failures.

Liqgo [15] is an open source tool that provides a multi-
cluster control plane and enables resource sharing among
different clusters. It enhances the properties of KubeFed,
that only provides a control plane for synchronisation among
clusters, with an interconnection of clusters. That connection
is used to make services accessible by the other clusters of
the federation. Resource sharing among clusters is handled via
remote clusters that can be accessed and used by any cluster of
the federation [16]. Yet, the remote resources are only 'rented’
for computation of the offloaded workload and not completely
assigned to a cluster, thus only handling short-term shortages.

To address KubeFed’s lack of automation and variable
scheduling settings, mck8s [17] was introduced. Mck8s is
an extension on Kubernetes and KubeFed that provides a
multi-cluster orchestration platform with the aim to maximize
resource-utilization [18]. It offers a scheduler with several
placement policies and horizontal pod-scaling over all clus-
ters of the federation. Availability is enhanced with dynamic
cluster provisioning capabilities and by adjusting the replica
count according to current load.

In our approach we designed and implemented a dynamic
cluster federation where nodes are exchanged on demand,
rather than provisioning of new resources. Thus we distribute
the existing nodes of a network depending on the current
load while keeping the overall amount of resources stable.
Our focus is on a decentralized node distribution among the
federation, rather than sharing of resources and pod-scaling.

V. CONCEPT AND DESIGN

A. Discourse: Initial Approach without Kubernetes

We will briefly describe our first approach to motivate the
usage of Kubernetes for within-cluster orchestration.

With scalability in mind, we first implemented a solution
with minimal memory footprint to reduce costs of the network
by using 1GB virtual machines. In contrast, Kubernetes master
nodes need at least 2GB of memory and worker nodes need
at least 700MB to run without faults [19].

In order to reduce the memory footprint, our initial solution
was built with faasd®, a lightweight solution of OpenFaas for
restricted edge devices that does not require a cluster. To make
resource utilization efficient, we implemented scheduling,
function placement and failure handling with faasd-functions
that are executed on demand. For storage we used a SQLite’
instance on each node (i.e. virtual machine).

Ohttps://github.com/openfaas/faasd
https://www.sqlite.org/index.html

To enable function chaining or function workflows, and to
add a recovery mechanism in case of node failures, a utility
module was added. This module enables functions to retrieve
data from the SQLite instance and to extract their public IP-
address. The IP is needed to call other faasd-functions from
within a function, as they are running in containers and thus
cannot call localhost to reach the faasd-gateway. To
retrieve data from the SQLite instance, we further needed to
implement a wrapper that enables access.

During the evaluation of this approach, the 1GB nodes were
running out of memory, resulting in unpredictable behavior.
Thus we had to increase memory. The minimum node on
Google Cloud, where the project is running without errors,
has 1 virtual CPU with 3.75 GB, enough memory to run
Kubernetes.

Hence, we decided that it is preferable to use Kubernetes for
within-cluster orchestration, as it is a widely adopted solution
with a CPU- and RAM-usage optimizing scheduler and a
reliable failure recovery mechanism. The updated approach
with groups composed of Kubernetes clusters will be described
in the following.

B. Kubernetes Approach

The initial setup of the Kubernetes-based grouping is
composed by one cloud instance and multiple Kubernetes
clusters that are geo-distributed and form a federation. With
this approach, the within-cluster orchestration is completely
left to the Kubernetes scheduler whereas the between-cluster
organisation is handled decentralized among the clusters based
on a cluster list that can be retrieved from the cloud instance.

Between-cluster organisation includes a load analysis within
the cluster and a node exchange between clusters that is trig-
gered based on a CPU-usage threshold. During load analysis,
the current CPU of the nodes within a cluster is monitored. As
soon as a certain threshold is exceeded, the cluster will nudge a
node exchange process that is requesting more compute power
(nodes) from other clusters of the federation to impede pending
pods.

To initiate the node exchange, the requesting cluster will
fetch a list with other clusters of the federation from the cloud
instance and then compute latency to each cluster. To minimize
latency, the requesting cluster will demand new compute
power from the cluster with lowest latency values. A cluster
that is receiving a node exchange request, will either suggest
a node, if it has enough capacity, or will cancel the node
exchange. As soon as a node exchange request succeeded, the
node will be signed out of the initial cluster and registered at
the requesting cluster.

To reduce the communication overhead during the second
step of the node exchange, the list, that is retrieved from the
cloud, does not include all members of the federation. The
cloud instance pre-selects members based on the geo-location,
as this is a first indicator of latency. Thus, in the second step,
only latency to a limited number of clusters must be evaluated
which reduces the bandwidth usage.

This method uses a central component (the cloud) which can
represent a single point of failure for a network. However, the
central instance is only used for the member-list retrieval and
for remote function deployment, in case new functions need
to be deployed to the network (that means, only functions
that haven’t been deployed before, in case of node failures
or node exchange, the functions will be redeployed by the
Kubernetes scheduler). Consequently, the functionality of the
deployed services within the network do not rely on the central
as the Kubernetes clusters will run independently, even when
disconnected. Additionally, the central instance is running in
the cloud, that means it has seemingly infinite resources and
thus a high reliability.

Altogether, this approach enables a decentralized node dis-
tribution among the groups of the network. As the location
and load of requests changes, the node distribution will adapt,
too, thus preventing pending pods in the Kubernetes Cluster.
Using Kubernetes for within-cluster orchestration enhances
availability and latency at the edge, while making sure that the
latency within the cluster is small, helps mitigating the lack of
network-awareness of the inherent Kubernetes scheduler (see
Section II).

VI. IMPLEMENTATION
A. Setup

To facilitate the deployment of the project, various Ansi-
ble playbooks have been created. These build and configure
the necessary infrastructure in the Google Cloud, such as a
compute instance for the cloud script and multiple Kubernetes
clusters. Authentication is solved through the use of a service
account.

As for the Ansible cloud playbook, the compute instance
is updated, Python and all the utilized modules are installed,
and the cloud Flask script is executed. The Flask script is
providing the REST API. The cluster playbook simply sets
up multiple clusters, each with a single node-pool consisting
of three homogeneous nodes. These nodes are comprised of
Google Cloud’s nl-standard-1 machines with 1 virtual
CPU and 3.75GB of memory. Further cluster-specific con-
figuration, such as configuring the firewall and the instal-
lation of OpenFaaS, is done by manually using kubectl,
gcloud and helm. Afterwards, the docker containers, that
are facilitating the cluster surveillance and node exchange,
can be deployed from our Docker registry using Kubernetes
deployments, which ensure that containers are always running
and restarted in case of node failure, node shutdowns and pod
eviction.

B. Cloud Instance

The primary purpose of the cloud instance is providing
clusters with information regarding other registered clusters
as well as remotely deploying OpenFaaS function workflows
with a single request.

Clusters can register at the cloud instance, providing their
IP and port, the respective OpenFaaS authentication data for
remote deployment and their location, depicted by longitude

and latitude. Once registered, they can request a list of other
registered clusters which are geographically close to them. The
list of clusters contains their addresses and is returned sorted
by distance. The number of returned clusters can be limited
by a parameter.

When remotely deploying a function workflow through
the cloud, the target cluster IP as well as a list of func-
tion names and associated registry URLs are passed to the
deploy-functions cloud endpoint. Deployment will be
handled entirely independent in the targeted cluster.

C. Cluster

The cluster code has been separated into two docker
containers — one called kubectl-gcloud which handles
all interactions with the Kubernetes cluster and the Google
Cloud via kubectl and gcloud. The second container,
called cluster-app, utilizes endpoints exposed by the first
container in order to survey the cluster and exchange nodes
with other clusters if necessary.

Endpoints provided by the first container include
/get-node-info, which provides the current load of
all nodes in the cluster and /add-node, which adds a node
to the cluster’s node-pool, thus increasing it’s size by one.
The last endpoint, /delete-node, first cordons a node.
This ensures that no new pods can be scheduled on this
node by Kubernetes, thus avoiding inefficient pod creation.
Afterwards, the node is drained. During drainage, all the
running pods are evicted and rescheduled on the remaining
nodes in the cluster. As soon as the eviction process is finished
successfully, the node is removed from the cluster and the
instance-group it belonged to. Leaving the node in its former
instance-group would lead to the Google Cloud automatically
rescheduling the node to its initial state and thus leaving it in
the cluster that it was meant to be removed from. To finalize
the node exchange process, the node is removed from the
Kubernetes cluster. Afterwards, requests are again authorized
with the use of a Google cloud service account. Additionally,
a Kubernetes service of type ClusterIP allows other pods
to communicate with this pod internally.

The second container, after it was initially registering at
the cloud, regularly checks the current cluster state. As soon
as the current load exceeds a configurable threshold, it will
request other clusters’ information from the cloud. By pinging
other clusters, it re-sorts the clusters by actual latency before
requesting a node exchange. The node-exchange requests are
sent starting from the cluster with the lowest latency. The
sorted list is traversed until until one cluster is found that can
continue operation with one node less. While the responding
cluster agrees to shutdown a node, the requesting cluster will
add a new node to the cluster. During this process it is not the
exact same node that gets passed from one cluster the other.
However, this is the closest approximation to a node exchange
that one can build while utilizing the google cloud tools which
are available. Once the start-up of the node has been initialized,
further addition or removal of nodes is disabled until the new
node is fully set up and added to the cluster.

Alternatively, a node can be requested from the cluster
through the request-node-exchange endpoint. If the
node exchange is not currently locked, the average load of
the cluster will be determined. If removing a node will not
push the load over a configurable threshold, the currently least
utilized node will be shutdown while a new node will be added
to the distant cluster. For Kubernetes to continue running, the
minimum cluster size is one node. Hence, at this point, further
adding or removing of nodes is disabled for three minutes.

Generally, important steps in the re-balancing process will
be logged and can be accessed through the get-log end-
point.

VII. EVALUATION

In this section we describe the results of the evaluation in
order to outline the added value of our implementation.

Figure 1 displays different properties of two Kubernetes
clusters plotted over time. Specifically, the average CPU load
and number of nodes for both clusters. In this scenario, the first
cluster was consistently challenged by thousands of requests
to an OpenFaa$S function using the hey® commandline tool.
During the experiment, roughly 17000 requests were sent. The
Python OpenFaaS function ping-pong returns the word pong
upon invocation.

As is evident from the graph that the initial roundtrip
time averaged over 4s. This is likely due to the fact that
initially there was only one replica and OpenFaaS took some
time to increase the number of replicas to utilize all three
cluster nodes. In this graph, bundles of 100 request roundtrip
times are averaged, thus individual roundtrip times might be
significantly higher. The average CPU load of the cluster also
increased to above 40% at this time. This likely happened due
to one node being fully loaded. The delay, that is evident from
the graph, can be attributed to the fact that the node CPU load
is updated quite infrequently. Thus, the first node probably
was under full load from the get go.

The CPU load further increases up to almost 100%. At this
time, the node exchange, which was initiated once the average
CPU load exceeded 50%, has been finalized. The sudden drop
to roughly 60% CPU utilization can partly be explained by
the new, not yet utilized, node being included in the CPU load
calculation. If all other 3 nodes were at full load, we would
reach an average load of a little more than 75%, assuming that
the new node is at 0% CPU-usage.

At this point, the CPU load continues to increase again,
almost reaching 100% load again. Since the sudden drop to
60%, OpenFaaS function replicas have been deployed on the
fourth node.

Even a little earlier, about 250s into the experiment, the
second cluster has finished shutting down another node, after
previously agreeing on moving another node. At roughly 325s
into the experiment, adding the node to the first cluster has
been finalized. It resulted in a slow decline in average CPU
utilization of the first cluster, back to under 60%. At this point,

8 github.com/rakyll/hey

Node exchange between clusters

8
—— CPU usage, cluster 1 — #nodes, cluster 1
—#— CPU usage, cluster 2 —— #nodes, cluster 2
request roundtrip time, cluster 1 [7
100
6
80 4
L w
= > =
£ Lt
L e
@ 60 4 5
=1 £
H# =
-] =
o =
o =
_3 E
40 -
| -2
201
F1
0 T T T T T T O
0 100 200 300 400 500

seconds

Fig. 1. Node Distribution among two Clusters with bulk request to Cluster 1

as the second cluster now consists of only one node, further
moving of nodes to the first cluster is no longer possible.

Roundtrip times had almost exclusively been under 2s since
the fourth node was added to the first cluster. From that point
on, there weren’t any notable changes, even after adding a
fifth node. This stabilization is to be somewhat expected with
CPU load not reaching 100%.

The CPU load of the second cluster is consistently below
15%. Overall, about 5% of requests were answered with non
200 status codes.

Figure 2 displays an experiment with the same cluster
composed of three nodes, but with the node exchange func-
tionality disabled. It is apparent that roundtrip times are much
greater in this scenario. In the graph, the vertical green lines
represent requests that had been answered with a 200 status
code. In total, over 96% of response status codes were ei-
ther 500 Internal Server Error or 503 Service
Unavailable. In total, only 1227 requests have been sent, a
much smaller number than in the first experiment. The reason
for this is the significantly longer roundtrip time while having
the same experiment runtime. To create an informative plot
with much fewer datapoints, bundles of 10 request roundtrip
times have been averaged, as opposed to 100 request roundtrip
times in Figure 1.

The evaluation clearly shows that our approach managed
to lower roundtrip times and increase request success rates
significantly.

VIII. CONCLUSION AND FUTURE WORK

In this work, we designed and implemented a grouping
of a network into multiple Kubernetes clusters that reduces
roundtrip times and increases availability by exchanging
nodes. Our approach ensures that enough resources are avail-
able in each single cluster at all times by defining a CPU-load
threshold that triggers a node-exchange process. During this
process, a cluster will request new compute power from other
clusters of the federation based on latency. Once a request
is accepted, the node will be moved from one cluster to the
other. Hence, cluster sizes adapt dynamically to cope with the
irregular and imbalanced load distribution among the network.
Geo-distributed applications can benefit from this approach as
it incorporates locality of nodes, reduces response time at the
edge and allows for a better resource distribution.

We evaluated our approach in a simplified setting with two
Kubernetes Clusters running on google cloud. By sending bulk
requests to one of the clusters, the experiments showed that our
mechanism is working. The results confirmed that the dynamic
exchange of nodes between the clusters indeed reduces latency
and increases the success rate of requests.

MNode exchange between clusters

100 m [T
—¢r CPU udlk'lﬁ'geli cluster 1

804 i

I
I
I
I
|
I
I
I
|
|
|
I
|
I
I
|
|
(!
I

604

40 - i i

CPU usage in %

L

20 1l n

request roundtrip time, cluster 1 -20.0

- 17.5

r15.0

r12.5

- 10.0

roundtrip time in s

7.5

— - 5.0

= -2.5

- - 0.0

T T T
0 100 200

T
300 400

seconds

Fig. 2. Bulk requests to single cluster

To further decrease latency of requests, the Kubernetes
scheduler can be extended with network-aware properties for
within the cluster and not only consider CPU and RAM
usage [8]. Additional improvement can be achieved with a
decentralized control plane [20]. Thus, substituting the cloud
instance with a cluster enhances availability and scalability
of the approach. Finally, we evaluated our approach with
a small cluster setting and only virtual resources. Therefore
the approach should be tested in a large and geo-distributed
network with virtual and physical devices, like raspberry
pies, to have a more realistic IoT setting where physical
devices could be installed on traffic lights, cars or sensors.
Another step would be going a middle way between the initial
approach - using faasd in combination with no clustering -
and the final approach with a fully fledged OpenFaaS and
Kubernetes implementation. One such tool could be K3s?, a
lightweight Kubernetes distribution built to be run on IoT and
Edge devices. This could further reduce CPU and memory
consumption bringing it closer to the initial faasd idea while
also providing all the benefits that come from using clusters.

%https://k3s.io/

REFERENCES

[1] G. McGrath and P. R. Brenner, “Serverless computing: Design, imple-
mentation, and performance,” in 2017 IEEE 37th International Confer-
ence on Distributed Computing Systems Workshops (ICDCSW), 2017,
pp. 405-410.

[2] M. S. Aslanpour, A. N. Toosi, C. Cicconetti, B. Javadi, P. Sbarski,
D. Taibi, M. Assuncao, S. S. Gill, R. Gaire, and S. Dustdar, “Serverless
edge computing: Vision and challenges,” in 2021 Australasian Computer
Science Week Multiconference, ser. ACSW "21. New York, NY, USA:
Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3437378.3444367

[3]1 E. van Eyk, L. Toader, S. Talluri, L. Versluis, A. Uta, and A. Iosup,
“Serverless is more: From paas to present cloud computing,” IEEE
Internet Computing, vol. 22, no. 5, pp. 8-17, 2018.

[4] A. Glikson, S. Nastic, and S. Dustdar, “Deviceless edge computing:
Extending serverless computing to the edge of the network,”
in Proceedings of the 10th ACM International Systems and
Storage Conference, ser. SYSTOR ’17. New York, NY, USA:
Association for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3078468.3078497

[5] L. U. Khan, I. Yaqoob, N. H. Tran, S. M. A. Kazmi, T. N. Dang, and
C. S. Hong, “Edge-computing-enabled smart cities: A comprehensive
survey,” IEEE Internet of Things Journal, vol. 7, no. 10, pp. 10200-
10232, 2020.

[6] D. Bermbach, F. Pallas, D. G. Pérez, P. Plebani, M. Anderson, R. Kat,
and S. Tai, “A research perspective on fog computing,” in Service-
Oriented Computing — ICSOC 2017 Workshops, L. Braubach, J. M.
Murillo, N. Kaviani, M. Lama, L. Burguefio, N. Moha, and M. Oriol,
Eds. Cham: Springer International Publishing, 2018, pp. 198-210.

[7] Kubernetes. [Online]. Available: https://kubernetes.io/

[8] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Towards network-
aware resource provisioning in kubernetes for fog computing applica-

[9]

[10]

(11]

[12]

[13]

[14]

[15]
[16]

(17]
(18]

[19]

[20]

tions,” in 2019 IEEE Conference on Network Softwarization (NetSoft),
2019, pp. 351-359.

A. J. Fahs, G. Pierre, and E. Elmroth, “Voila: Tail-latency-aware fog
application replicas autoscaler,” in 2020 28th International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommuni-
cation Systems (MASCOTS), 2020, pp. 1-8.

M. A. Tamiru, G. Pierre, J. Tordsson, and E. Elmroth, “Instability in
geo-distributed kubernetes federation: Causes and mitigation,” in 2020
28th International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS), 2020, pp. 1-8.
F. Faticanti, D. Santoro, S. Cretti, and D. Siracusa, “An application of
kubernetes cluster federation in fog computing,” in 2021 24th Confer-
ence on Innovation in Clouds, Internet and Networks and Workshops
(ICIN), 2021, pp. 89-91.

N. Grozev and R. Buyya, “Inter-cloud architectures and application
brokering: taxonomy and survey,” Software: Practice and Experience,
vol. 44, no. 3, pp. 369-390, 2014. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2168

J. Hasenburg, F. Stanek, F. Tschorsch, and D. Bermbach, “Managing
latency and excess data dissemination in fog-based publish/subscribe
systems,” in 2020 IEEE International Conference on Fog Computing
(ICFC), 2020, pp. 9-16.

Kubernetes cluster federation. [Online]. Available:
https://github.com/kubernetes-sigs/kubefed

LigoTech. Liqo. [Online]. Available: https://github.com/LigoTech/liqo
G. Arbezzano and A. Palesandro. Simplify-
ing multi clusters in kubernetes. [Online]. Avail-
able: https://www.cncf.io/blog/2021/04/12/simplifying-multi-clusters-in-
kubernetes/

mkc8s. [Online]. Available: https:/github.com/moule3053/mck8s

M. A. Tamiru, G. Pierre, J. Tordsson, and E. Elmroth, “mck8s: An
orchestration platform for geo-distributed multi-cluster environments,”
in ICCCN 2021 - 30th International Conference on Computer
Communications and Networks, Athens, Greece, Jul. 2021, pp. 1-12.
[Online]. Available: https://hal.inria.fr/hal-03205743

Kubernetes cluster requirements. [Online]. Available:
https://docs.kublr.com/installation/hardware-recommendation/

L. Larsson, H. Gustafsson, C. Klein, and E. Elmroth, “Decentralized
kubernetes federation control plane,” in 2020 IEEE/ACM 13th Interna-
tional Conference on Utility and Cloud Computing (UCC), 2020, pp.
354-359.

